3. PONAŠANJE PRI ZEMLJOTRESU NELINEARNIH SISTEMA SA JEDNIM STEPENOM SLOBODE

UVOD

Nivo opterećenja elastične konstrukcije usled zemljotresa može, u slučaju izuzetno značajnih objekta da se usvoji kao *projektno opterećenje* konstrukcije pri zemljotresu, ili da se kontrolisano smanji. Klasični koncept smanjenja nivoa opterećenja zasniva se na dopuštanju *nelinearnog odgovora* konstrukcije, uz pojavu *kontrolisanih oštećenja konstrukcije*. Nakon objašnjenja osnovnih pojmova dinamike *elasto-plastičnih sistema*, ilustruje se postupak formiranja *nelinearnog spektra* ubrzanja, uspostavljanjem veze *raspoložive duktilnosti pomeranja* konstrukcije i *dozvoljenog nivoa redukcije* seizmičkog opterećenja. Polazeći od nelinearnog spektra ubrzanja, izložen je *opšti algoritam* projektovanja seizmički otpornih konstrukcije dostizanjem *kapaciteta deformacija pri monotonom statičkom opterećenju*, formulisan je i *kombinovani kriterijum*, kao podloga za definisanje *ekvivalentne duktilnosti pomeranja*, čime se obuhvata i ciklična istorija deformacija konstrukcije pri zemljotresu.

3.1 TRADICIONALNA - SAVREMENA ZAŠTITA KONSTRUKCIJA OD ZEMLJOTRESA

Nivo seizmičkog opterećenja pri *elastičnom odgovoru konstrukcija* obično je izuzetno visok, i teško ga je konstrukcijskim merama prihvatiti. Pri tome, već je uvođenje viskoznog prigušenja od $\xi = 5\%$ značajno, ali ne i dovoljno ublažilo efekte zemljotresa, slika 3.1 - pseudo ubrzanje konstrukcije normalizovano na ubrzanje zemljine teže.

Slika 3.2 "Stabilan sistem" pri kretanju

Problem ima i svoju ekonomsku stranu, kao i

uvek - uložiti sredstva pri građenju za nešto što se možda neće ni desiti, ili prihvatiti rizik oštećenja i eventualnih popravki? Pri razmišljanju kako da se konstrukcija racionalno *adaptira zemljotresu*, da se *zaštiti od preopterećenja* usled *prinudnih pomeranja* izazvanih pomeranjem tla koje ne možemo da sprečimo, treba imati u vidu da su pri dinamičkim pojavama mogući i *konstrukcijski sistemi - privremeni mehanizmi* koji su "stabilni" dok traje kretanje, slika 3.2. Kod realnih konstrukcija, potrebno je ipak obezbediti stabilnost sistema pre i nakon prestanka kretanja, kao i ograničiti moguću *trajnu deformaciju* sistema.

Tradicionalni koncept smanjenja efekata zemljotresa zasniva se na umanjenju seizmičkog opterećenja putem *adaptacije krutosti osnovne noseće konstrukcije* pomeranjima

usled zemljotresa, slika 3.3, što podrazumeva pojavu određenog nivoa oštećenja konstrukcije - *neelastičan tj. nelinearan odgovor konstrukcije*. Usvojeni iznos prigušenja od 5% takođe podrazumeva pojavu naglašenijih prslina.

Slika 3.3 Tradicionalni koncept građenja i zaštite od zemljotresa

Slika 3.4 Savremeni koncepti građenja i zaštite od zemljotresa

Deluje kao paradoks da konstrukcija sa manjim opterećenjem $F < F_e$ ima veća oštećenja, slika 3.3.b, ali redosled je obrnut, opterećenje je niže jer je upravo pojavom oštećenja *snižena krutost konstrukcije*, tipično za uticaje *prinudnih pomeranja*.

Ako se ne može sprečiti pomeranje tla, konstrukcijski je moguće u horizontalnoj ravni preseći, *izolovati temelj konstrukcije* od kretanja tla, konceptualni primer *savremene zaštite konstrukcija* - kuća "na točkovima" na slici 3.4.a. Ovaj koncept je efikasan u slučaju krutih konstrukcija, produžava se period oscilovanja i smanjuje se efektivna sila P_{ef} .

Ono što je bitno, treba ublažiti *pobuđivanje kretanja mase* usled propagiranja oscilacija kroz konstrukciju. Ako je glavna masa konstrukcije visoko, stubovi mogu da se zaštite postavljanjem *dinamičke izolacije* ispod mase, primer konstrukcija krovova velikih raspona na neoprenskim ležištima na vrhu stubova, konceptualno rešenje prema slici 3.4.c. U oba navedena slučaja, relativna pomeranja mase konstrukcije u odnosu na podlogu - *smicanje ležišta* često je merodavan kriterijum za realizaciju zaštite.

Zaštita konstrukcija može da se ostvari i intervencijama koje modifikuju prigušenje kretanja. Efekti prigušenja mogu da se pojačaju dodavanjem posebnih *"dampera" - prigušivača*, slika 3.4.b, sistem pogodan u slučaju fleksibilnih konstrukcija.

Tradicionalni način građenja i zaštite još uvek preovlađuje, i u propisima pa i u praksi, tako da se naredne analize odnose na ovaj koncept. Ako pri prinudnim pomeranjima treba ograničiti nivo naprezanja nelinearnim odgovorom konstrukcije, tada je *elasto-plastičan model* odgovora konstrukcije svakako najjednostavniji.

3.2 OSNOVI DINAMIKE ELASTO-PLASTIČNIH SISTEMA SA JEDNIM STEPENOM SLOBODE

Na slici 3.5 ilustrovan je sistem sa jednom masom m za koji se pretpostavlja da je konstrukcijskim merama obezbeđena elasto-plastična veza sile F i pomeranja d vrha konstrukcije.

Pri *prinudnom pomeranju* vrha d_m , reakcija *elastičnog sistema* sa krutošću k iznosila bi $F_e = kd_m$, tačka I na slici 3.5.b. Pri pomeranju d_m , akumulirana potencijalna energija jednaka je zbiru površina $E_{eI} + E_{e2} + E_h$, slika 3.5.b. Ukoliko se sistem oslobodi oslonca, nastupiće oscilacije duž prave I-II, sa periodom oscilovanja $T=2\pi\sqrt{(m/k)}$, uz stalnu izmenu

Slika 3.5 Dinamika elasto-plastičnog - EP sistema

kinetičke i potencijalne energije. Ukoliko nema prigušenja, amplitude oscilacija jednake su početnom pomeranju d_m - elastičan sistem "se seća" stanja iz koga je izveden i reaguje "kolerično".

Pretpostavimo da je elastični nivo opterećenja F_e konstrukcijski neprihvatljiv, i da želimo da ga smanjimo na iznos $F_y = F_e/R$, gde je R usvojena vrednost *faktora redukcije*

elastičnog opterećenja. Pri prinudnom pomeranju d_m , elasto-plastičan sistem (EP - sistem) sa istom *inicijalnom krutošću k* "stići će" u tačku 3 na slici 3.5.b.

Akumulirana potencijalna energija EP sistema jednaka je površini E_{e2} , jer je znatan deo unete energije E_h nepovratno izgubljen proizvođenjem *trajne deformacije* d_p . Oslobađanjem od oslonca, EP sistem će da osciluje u "pomerenom položaju", sa smanjenim ubrzanjem i amplitudom, po pravoj 3-4 odnosno između tačaka M-EP na slici 3.5.a. Kako su masa i inicijalna krutost isti, to je i period oscilovanja EP sistema jednak periodu oscilovanja elastične konstrukcije.

Zavisno od nosivosti F_{y} odnosno stepena redukcije opterećenja R, EP sistem akumulira manje potencijalne energije - delimično "zaboravlja odakle je krenuo", adaptira se trajnim deformacijama, reaguje relativno "flegmatično".

Slika 3.6 Odgovor EP sistema na impuls ubrzanja tla

Ukoliko je u pitanju *monotoni statički opit cikličnih deformacija*, pri "rasterećenju", pomeranju iz tačke 3 u suprotnom smeru, odgovor EP sistema opisan je "putem" 3-4-5-6 itd.

Primer 3.1....

Za sistem sa jednom masom i periodom oscilovanja T=0,5s, odrediti odgovor sistema na impuls ubrzanja tla koji linearno raste od $a_g(t=0)=0$ do $a_g(t=0,1s)=0,2g$, slika 3.6.a. Za vrednosti faktore redukcije usvojiti R=1 (elastičan sistem), 2,5, 5 i 10, a za prigušenje $\xi = 0$.

Za rešenje nelinearnog dinamičkog problema upotrebljen je program DIANA -TNO Delft /5/. Zadatak je rešen primenom Njumarkove metode integracije i modifikovane Njutn-Rapsonove iterativne procedure /3/,/4/. Na slici 3.6.a prikazana su relativna pomeranja, a na slici 3.6.b opterećenje odgovarajuće konstrukcije, normalizovano na proizvod mase i maksimalnog ubrzanja tla - pseudo ubrzanje konstrukcije. Kao što je i nagovešteno, nakon prestanka kretanja tla (t=0, Is), EP sistemi osciluju u pomerenom - deformisanom položaju, sa smanjenim ubrzanjem odnosno opterećenjem sistema, limitiranim usvojenom nosivošću sistema F_{ν} .

3.3 ODGOVOR NA ZEMLJOTRES ELASTO-PLASTIČNIH SISTEMA SA JEDNIM STEPENOM SLOBODE

Pretpostavimo da je poznat odgovor elastične konstrukcije sa krutošću k na dati zapis ubrzanja tla, maksimalno seizmičko opterećenje F_e i relativno pomeranje d_e , slika 3.7. Potrebno je odrediti tok i maksimalnu vrednost pomeranja d_m EP sistema sa istom inicijalnom krutošću k, ali sa redukovanom nosivošću $F_v = F_e /R$ i odgovarajućim

Slika 3.7 Osnovni parametri EP modela

redukovanom nosivošću $F_y = F_e /R$ i odgovarajućim pomeranjem d_y na granici dostizanja nosivosti tj. granici elastičnosti.

Odnos $\mu_d = d_m/d_y$ naziva se *potrebna duktilnost pomeranja sistema*. Da bi se obezbedila stabilnost konstrukcije, *kapacitet pomeranja konstrukcije d_u* treba da je veći od očekivanog maksimalnog pomeranja d_m pri zemljotresu. Cilj nelinearnih dinamičkih analiza najčešće je utvrđivanje *potrebne duktilnosti pomeranja* pri *usvojenoj redukciji nosivosti sistema*.

Jednačine kretanja (2.6) i dalje važe na početnom delu 1-2, dok na delu 2-3 glasi

$$md'' + cd' + F_{y} = -md''_{g}$$
 (3.1)

a na delu 3-4, slika 3.5.b

$$md'' + cd' + k(d - d_p) = -md''_{e}$$
 (3.2)

Primer 3.1

Za zapise El Centro, Petrovac i Ulcinj, analizirati odgovor elasto - plastičnih sistema sa periodom oscilovanja T=0,5, 1,5 i 3,0 sekunde, za vrednosti faktora redukcije R=2,5, 5 i 10. Za sva tri zapisa, za maksimalno ubrzanje tla usvojiti a_e=0,2g.

U prvom koraku određeno je maksimalno opterećenje elastičnog sistema F_e , i potom su formirani elasto-plastični sistemi sa redukovanom nosivošću u odnosu na *zahtevanu nosivost elastičnog sistema* F_e . U Tabeli 1 dat je prikaz rezultata analiza za sve zapise i periode oscilovanja, dok je na slici 3.8 prikazan vremenski odgovor konstrukcije sa periodom T=0,5 sekundi usled zemljotresa El Centro. Kriva R=1 predstavlja odgovor elastične konstrukcije, koji je prethodno prikazan i na slici 2.4.

	Tabela 1					Period T							
		0.50	0.50	0.50	0.50	1.50	1.50	1.50	1.50	3.00	3.00	3.00	3.00
	R	A/a _g	D/a _g	μ_d	DM	A/a _g	D/ag	μ_d	DM	A/a _g	D/a _g	μ_d	DM
	1.0	2.87	0.018		0.00	0.59	0.034		0.00	0.39	0.088		0.00
El Centro	2.5	1.15	0.013	1.76	0.96	0.24	0.032	2.40	1.21	0.15	0.073	2.08	1.05
	5.0	0.58	0.014	3.89	1.35	0.12	0.037	5.42	1.77	0.08	0.054	3.03	0.92
	10.0	0.29	0.017	9.31	2.05	0.06	0.055	16.30	2.85	0.04	0.078	8.88	1.35
	1.0	4.85	0.031			0.27	0.015			0.11	0.024		
Petrovac	2.5	1.95	0.019	1.54	0.92	0.11	0.022	3.61	1.68	0.04	0.019	2.02	0.98
	5.0	0.97	0.012	1.88	0.90	0.05	0.011	3.57	1.42	0.02	0.014	2.85	0.90
	10.0	0.49	0.015	4.75	1.12	0.03	0.010	6.42	1.88	0.01	0.016	6.85	1.29
	1.0	1.97	0.012			2.18	0.124			0.34	0.115		
Ulcinj	2.5	0.79	0.029	5.91	3.01	0.87	0.100	2.02	0.98	0.20	0.125	2.72	1.23
	5.0	0.40	0.052	20.80	6.64	0.44	0.098	3.94	1.06	0.10	0.087	3.80	0.97
	10.0	0.20	0.071	57.30	9.43	0.22	0.127	10.20	1.40	0.05	0.062	5.42	0.91

Slika 3.8 Odgovor EP sistema na zemljotres El Centro

Relativna pomeranja EP sistema u granicama su pomeranja koja dostiže elastičan sistem (35,6mm), pri čemu je najmanje pomeranje sistema sa faktorom redukcije R=2,5 (25,0mm = 70% pomeranja elastičnog sistema), slika 3.8.a.

Kao što je i zadato, maksimalno opterećenje EP sistema ne prelazi propisanu nosivost u odnosu na elastičan sistem, slika 3.8.b, normalizovano na ma_{s} .

Deljenjem pomeranja d(t) u nekom trenutku vremena sa odgovorajućom vrednošću pomeranja na granici elastičnosti d_y za svaki od EP modela, dobija se tok promene faktora duktilnosti pomeranja $\mu_d(t)$, slika 3.8.c. Karakteristično je da maksimalna *potrebna duktilnost pomeranja* EP sistema raste sa veličinom faktora redukcije elastičnog opterećenja *R*. Smanjenje nosivosti "plaća se" povećanim zahtevima za obezbeđenje post-elastičnih deformacija konstrukcije. Zahtevane vrednosti potrebne duktilnosti pomeranja μ_d relativno su bliske usvojenim vrenostima faktora redukcije opterećenja *R*, razlike su do 30%.

U Tabeli 1, prikazane su maksimalne vrednosti odgovora konstrukcija, maksimalno pseudo ubrzanje A/a_e i pomeranje D/a_e normalizovani na maksimalno ubrzanje tla

 $a_g = 0,2g$. Pored maksimalne potrebne duktilnosti pomeranja μ_d , prikazane su i vrednosti *indeksa oštećenja DM* konstrukcije, koji će biti komentarisan kasnije, u poglavlju 3.6.

Na slici 3.9.a prikazana je zavisnost pseudo ubrzanja $A(a_g)$ konstrukcije u funkciji perioda oscilovanja i faktora redukcije R za zapis El Centro. Kroz sračunate vrednosti za tri perioda oscilovanja provučena je regresiona kriva. Maksimalno ubrzanje pa i opterećenje konstrukcije opadaju sa porastom faktora redukcije R kao i sa porastom perioda T.

Slika 3.9 Zapis El Centro: a) pseudo ubrzanje, b) potrebna duktilnost pomeranja

Na slici 3.9.b prikazana je zavisnost potrebne duktilnosti pomeranja μ_d u funkciji faktora redukcije *R* i perioda oscilovanja *T* za zapis El Centro. U području perioda dužih od t=0.5 sekundi, trend je da potrebna duktilnost ne zavisi od perioda oscilovanja, kao i da vrednost potrebne duktilnosti pomeranja teži usvojenoj vrednosti faktora redukcije *R*.

Izneta zapažanja važe i za zapis Petrovac, Tabela 1, dok odgovor konstrukcije sa periodom T=0,5s na zapis Ulcinj pokazuje potpuno odstupanje.

3.4 NELINEARNI SPEKTRI ODGOVORA EP SISTEMA

U praksi je obično poznata *obezbeđena vrednost faktora duktilnosti pomeranja* μ_d , a traži se *dozvoljena vrednost faktora redukcije* opterećenja *R*, inverzan problem.

Analogno prethodnoj analizi, ali uz malo više truda, mogu da se formiraju inverzne krive $R(\mu_d, T)$, crtkaste linije na slici 3.10.a. Sistematskom parametarskom analizom različitih EP sistema podvrgnutih različitim zapisima ubrzanja tla, moguće je ustanoviti pogodne aproksimacije ove zavisnosti, od kojih je jedna, možda i najpoznatija prikazana na slici 3.10.a, puna linija, za vrednosti faktora duktilnosti pomeranja konstrukcije μ_d =2,5, 5 i 10.

U području izrazito kratkih perioda oscilovanja, ispod vrednosti T_1 , vrednost faktora redukcije iznosi R=1, za sve obezbeđene duktilnosti pomeranja. To je tzv. oblast *"jednakih ubrzanja konstrukcije i tla*", karakteristična za izrazito krute konstrukcije koje se moraju projektovati na praktično elastičan odgovor konstrukcije.

Slika 3.10 a) Zavisnost faktora redukcije R od obezbeđene duktilnosti pomeranja; b) nelinearni spektar pseudo ubrzanja konstrukcije

U području kraćih i srednjih perioda $T=T_1 - T_2$, dozvoljena vrednost faktora redukcije R može da se aproksimira izrazom

$$R = (\mu_d - 1)^{1/2} \tag{3.3}$$

U području dužih perioda, $T > T_2$, za vrednost faktora redukcije može da se usvoji da je jednaka vrednosti obezbeđenog faktora duktilnosti pomeranja

Slika 3.11 Interpretacija faktora redukcije R

 $R = \mu_d$

Ukoliko se vrednosti elastičnog spektra ubrzanja (R=1) podele odgovarajućim vrednostima faktora redukcije $R(\mu_d, T)$, dobija se *nelinearni spektar pseudo ubrzanja konstrukcije*, primer za zapis El Centro na slici 3.10.b.

Na slici 3.11 prikazana je uobičajena interpretacija navedenih veza. Iz sličnosti trouglova dijagrama *F-d*, može da se zaključi da identitet $R=\mu_d$ ustvari znači da je *pomeranje EP sistema jednako pomeranju elastičnog sistema sa istom početnom krutošću*, fundamentalni zaključak na kome će se zasnivati propisi, slika 3.11.a.

Prema slici 3.11.b, relacija $R = (\mu_d - 1)^{1/2}$ može da se interpretira kao uslov jednakih površina ispod dijagrama *F-d* elastičnog i EP sistema, otuda i naziv *"uslov jednakih energija*"

3.5 KONCEPT NELINEARNOG PRORAČUNA SISTEMA SA JEDNIM STEPENOM SLOBODE

Na osnovu rezultata dosadašnjih analiza, može da se uspostavi koncept proračuna odgovora konstrukcija na dejstva zemljotresa, koji se zasniva na poznatim *nelinearnim spektrima odgovora* konstrukcija na dejstva zemljotresa, prema algoritmu na slici 3.12.

Sa poznatim podacima o geometriji, materijalu, opterećenju konstrukcije kao i maksimalnom očekivanom ubrzanju tla a_g , projektant može da sračuna period oscilovanja T_f . Na osnovu tipa konstrukcijskog sistema, nivoa aksijalnog opterećenja i predviđenih detalja armiranja, usvaja se *obezbeđena duktilnost pomeranja* μ_d , recimo $\mu_d = 5$. Na osnovu sračunatog perioda i duktilnosti, sa referentnog nelinearnog spektra ubrzanja očitava se vrednost ubrzanja konstrukcije $A(a_g)$, pa je projektno opterećenje jednako proizvodu mase, ubrzanja tla i normalizovanog ubrzanja, $F_d = (F_v) = ma_g A$.

Slika 3.12 Koncept proračuna konstrukcija na bazi nelinearnog spektra ubrzanja konstrukcije

Sa projektnim opterećenjem vrši se "statički proračun", određuju se naprezanja delova konstrukcije, dimenzionišu preseci i proverava stvarno pomeranje konstrukcije pri zemljotresu, polazeći od pomeranja na granici elastičnosti. Konačno, vrši se konstruisanje detalja tako da se *obezbedi pretpostavljena vrednost duktilnosti pomeranja konstrukcije*.

U prethodnom poglavlju, nelinearni spektar ubrzanja konstrukcije konstruisan je razmatrajući *elasto-plastični model* odgovora konstrukcije. Izloženi algoritam se principijelno ne menja i ako se odgovor konstrukcije modelira na neki drugi način, koji bolje opisuje *realni odgovor* konstrukcija od armiranog betona, na primer. Osnov koncepta je da, za poznatu *duktilnost pomeranja* konkretne konstrukcije, *nosivost nelinearnog sistema* može da se redukuje u odnosu na *maksimalni odgovor elastičnog sistema*.

3.6 AKUMULACIJA OŠTEĆENJA I EKVIVALENTNA DUKTILNOST POMERANJA

Rezultat dosadašnjih razmatranja je da je definisan odgovor elastične, kao i elastoplastične konstrukcije na zemljotres - pomeranje d_m odnosno potrebna duktilnost pomeranja μ_d , definisana kao odnos *maksimalnog pomeranja* d_m nelinearnog sistema pri zemljotresu i pomeranja d_y pri *dostizanju nosivosti* nelinearnog sistema. Međutim, koliki treba da bude *kapacitet pomeranja* konstrukcije d_u pri *monotonom statičkom opterećenju*, da bi *nivo oštećenja konstrukcije* nakon zemljotresa bio u prihvatljivim, *željenim granicama?* - nije definisan *kriterijum prihvatljivog odgovora nelinearne konstrukcije* pri zemljotresu.

Kao najjednostavniji kriterijum može da se usvoji odnos *maksimalnog pomeranja* d_m pri zemljotresu i obezbeđenog kapaciteta pomeranja d_u konstrukcije pri *monotonom statičkom prinudnom pomeranju*, slika 3.13. Tada *indeks oštećenja konstrukcije DM* iznosi

$$DM = d_m / d_u = \mu_d / \mu_u < 1 \tag{3.5}$$

gde je $\mu_u = d_u / d_y$ duktilnost pomeranja pri dostizanju loma, *iscrpljenja nosivosti konstrukcije*. Ako je pri zemljotresu indeks oštećenja dostigao vrednost DM = I, konstrukcija je dovedena u stanje kolapsa. Projektant može da utiče na nivo *zaštite konstrukcije* od oštećenja izborom odgovarajuće veće vrednosti d_u .

Kriterijum (3.5) prihvatljiv je u slučaju odgovora konstrukcija sa jednim izraženim pomeranjem preko granice elastičnosti d_y , i sa zanemarljivom *akumulacijom oštećenja* zbog većeg broja ciklusa post-elastičnih deformacija.

Međutim, u situacijama kada konstrukcija trpi veći broj značajnijih ciklusa postelastičnih deformacija, *akumulacija oštećenja* u toku dužeg trajanja *jakog dela zemljotresa* može da "iscrpi" konstrukciju. U takvim slučajevima, kao mera oštećenja konstrukcije često se usvaja *kombinovana vrednost* indeksa oštećenja u obliku

$$DM = \frac{d_m}{d_u} + \beta \frac{\Sigma E_h}{F_v d_u} \tag{3.6}$$

gde je ΣE_h integral potrošene energije histerezisne krive EP sistema, slika 3.13, čija vrednost raste sa dužinom trajanja zemljotresa odnosno sa brojem ciklusa, F_y je nosivost sistema, dok je prvi član d_m / d_u već definisan izrazom (3.5.). Vrednost faktora β utvrđuje se eksperimentalno, a za kvalitativnu analizu odgovora AB konstruk-

cija može da se usvoji $\beta=0,15/6/$. Kao i ranije, vrednost DM=1 definiše potpuno iscrpljenje nosivosti konstrukcije.

Primer 3.2.....

Na slici 3.14 prikazan je tok promene vrednosti indeksa oštećenja DM u toku

Slika 3.14 Zapis El Centro, indeks oštećenja DM: a) $d_u = d_e$; b) $d_u > d_e$

trajanja zemljotresa El Centro sa maksimalnim ubrzanjem tla $a_g = 0, 2g$. Dijagram 3.14.a dobijen je uz pretpostavku da je *kapacitet pomeranja d_u pri monotonom opterećenju* upravo jednak maksimalnom ostvarenom pomeranju d_e odgovarajuće *elastične konstrukcije*, $d_u = d_e$.

U tom slučaju je $\mu_u = R$, slika 3.7. Početna vrednost indeksa, DM(t=0), pretstavlja ustvari izraz (3.5), da bi potom vrednost indeksa DM rasla u toku trajanja zemljotresa.

Predviđeni kapacitet pomeranja je nedovoljan *(DM>1)*, po pravilu u slučajevima većih stepena redukcije opterećenja R, kada je značajan udeo akumilacije oštećenja, drugi član izraza 3.6, slika 3.13. Za dati zapis zemljotresa, kapacitet deformacija konstrukcije d_u u ovom slučaju treba korigovati.

Na slici 3.14.b prikazana je promena indeksa DM za korigovanu konstrukciju, kod koje je za kapacitet pomeranja d_u pri monotonom opterećenju usvojeno: $d_u = 1,5d_e$ u slučaju $R=2,5, d_u = 1,8d_e$ u slučaju R=5 i $d_u = 2,4d_e$ u slučaju R=10. Kao što se vidi, vrednosti indeksa DM praktično su svedene u granice DM=1, osim za slučaj konstrukcije sa periodom T=1,5 za koju je vrednost faktora redukcije opterećenja R=10 u ovom slučaju prevelika.

Slika 3.15 Zapis Petrovac, indeks oštećenja DM: a) $d_u = d_e$; b) $d_u > d_e$

Slika 3.16 Zapis Ulcinj, indeks oštećenja DM: a) $d_u = d_e$; b) $d_u > d_e$

Tok akumulacije oštećenja u toku trajanja zemljotresa Petrovac i Ulcinj prikazan je na slikama 3.15 odnosno 3.16. Za konstrukciju sa periodom T=0,5 sekundi "lociranu" u Ulcinju "nema spasa", ako bi se stvarno ponašala prema primenjenim modelima.

Rezultati izvršenih analiza ukazuju da je u znatnom broju slučajeva potrebno obezbediti nešto veći *potreban kapacitet duktilnosti pomeranja* μ_u *pri monotonom opterećenju* od zahtevane duktilnosti pomeranja μ_d pri zemljotresu - tzv. *ekvivalentnu duktilnost*, načelno

Slika 3.17 Potreban kapacitet duktilnosti pomeranja

$$\mu_u = \frac{\mu_d (1 + \alpha \mu_d)}{DM} \tag{3.7}$$

gde se za vrednost faktora α može kvalitativno usvojiti $\alpha = 0, 10$. Za vrednost DM = 1, 0, relacija 3.7 prikazana je na slici 3.17, za dve vrednosti parametra α .

Čemu vrednost DM u izrazu 3.7? Kvalitativno, smatra se da su u slučaju kada je DM < 0, 5, oštećenja konstrukcije posle zemljotresa popravljiva, da sa porastom vrednosti DM nivo oštećenja raste, da bi pri vrednosti DM=I nastupio kolaps konstrukcije /7/.

Projektant načelno može da *bira nivo oštećenja* konstrukcije, pri čemu se kriterijum oštećenja može formulisati i po drugim veličinama: obrtanju preseka,

relativnom spratnom pomeranju, rotacijama preseka, izduženju armature, širini prslina itd. Koncept je ilustrovan na primeru kritičnog preseka, ali se može generalizovati na element konstrukcije, sprat i konstrukciju u celini.

Razvoj propisa kreće se u pravcu formulisanja koncepta projektovanja na bazi kontrole nekog od bitnih parametara koji opisuju ponašanje i oštećenje objekata - *"performance based design".*